Ignaas Jimidar | Nanomaterials for Energy | Best Researcher Award

Dr. Ignaas Jimidar | Nanomaterials for Energy | Best Researcher Award

Senior Postdoctoral Fellow | Vrije Universiteit Brussel | Belgium

Dr. Ignaas Jimidar is a Senior Postdoctoral Fellow at Vrije Universiteit Brussel (VUB), Belgium, whose research lies at the interface of chemical engineering, materials science, and analytical chemistry. His work focuses on microscale particle assembly, solvent-free fabrication, and triboelectric phenomena, advancing understanding of how particles interact, organize, and perform in engineered microenvironments. With a growing impact in the fields of soft matter, microfluidics, and energy harvesting, Dr. Ignaas Jimidar has authored over 28 research documents with 176 citations and an h-index of 9 (Scopus). His portfolio includes 20 peer-reviewed journal articles, invited contributions such as a Review in Small and a Perspective in ACS Applied Materials & Interfaces, and editorials in Physics Today and LCGC Magazine. His innovative research on granular interfaces and solvent-free assembly has been featured as cover articles in leading journals like ACS Applied Materials & Interfaces, Soft Matter, and Langmuir. Dr. Ignaas Jimidar has filed two patents, including developments in microfluidic devices and triboelectrically assembled SERS substrates, demonstrating strong translational potential. His research has attracted international recognition through awards such as the 2025 IACIS Emerging Investigator Award, MSCA Seal of Excellence (2024), and Young Scientists Award (MSB 2024). He has presented his work at prestigious venues, including the American Physical Society March Meeting, µTAS, and Colloids2025, and served as a guest editor for Soft Matter’s themed collection “Soft Matter Electrified.” His academic service extends to editorial reviewing for over 30 journals, conference chairing, and scientific committee memberships. Dr. Ignaas Jimidar’s contributions bridge fundamental colloid science and applied microengineering, advancing the development of next-generation materials for energy, sensing, and analytical technologies. His interdisciplinary innovations continue to redefine how particle assemblies and microscale systems can be designed for sustainable, high-performance applications.

Profiles: Scopus | ORCID | Google Scholar | ResearchGate | Researchportal | Researcher Profile

Featured Publications

1. Sotthewes, K., Gardeniers, H. J. G. E., Desmet, G., & Jimidar, I. S. M. (2022). Triboelectric charging of particles, an ongoing matter: From the early onset of planet formation to assembling crystals. ACS Omega, 7(46), 41828–41839. https://doi.org/10.1021/acsomega.2c05554

2. Jimidar, I. S. M., Kwiecinski, W., Roozendaal, G., Kooij, E. S., Gardeniers, H. J. G. E., & Desmet, G. (2023). Influence of wettability and geometry on contact electrification between nonionic insulators. ACS Applied Materials & Interfaces, 15(35), 42004–42014. https://doi.org/10.1021/acsami.3c11010

3. Van Geite, W., Jimidar, I. S. M., Sotthewes, K., Gardeniers, H., & Desmet, G. (2022). Vacuum-driven assembly of electrostatically levitated microspheres on perforated surfaces. Materials & Design, 216, 110573. https://doi.org/10.1016/j.matdes.2022.110573

4. Jimidar, I. S. M., Sotthewes, K., Gardeniers, H., & Desmet, G. (2020). Spatial segregation of microspheres by rubbing-induced triboelectrification on patterned surfaces. Langmuir, 36(24), 6793–6800. https://doi.org/10.1021/acs.langmuir.0c00959

5. Sotthewes, K., Roozendaal, G., Šutka, A., & Jimidar, I. S. M. (2024). Toward the assembly of 2D tunable crystal patterns of spherical colloids on a wafer-scale. ACS Applied Materials & Interfaces, 16(9), 12007–12017. https://doi.org/10.1021/acsami.3c20483