Prof. Dr. Sunkook Kim | Nanophotonics and Nanoelectronics | Best Researcher Award
Professor | Sungkyunkwan University | South Korea
Prof. Dr. Sunkook Kim is an internationally recognized scientist whose pioneering contributions lie at the intersection of 2D materials, nanoelectronics, and flexible device engineering. With over 9,566 citations, 231 publications, and an h-index of 46, his research has profoundly influenced advanced materials and next-generation electronic systems. His work encompasses high-mobility transistors, flexible OLED and micro-LED displays, nanostructured memristors, neuromorphic sensors, and anticounterfeiting technologies based on MoS₂, WS₂, and transition metal dichalcogenides (TMDs). His studies have been featured in Nature Electronics, Nature Communications, Advanced Materials, ACS Nano, and Advanced Functional Materials, many highlighted as cover articles, reflecting the high impact of his research. Prof. Dr. Sunkook Kim’s R&D achievements bridge fundamental material synthesis and device integration, leading innovations in stretchable electronics, haptic feedback systems, and large-area 2D semiconductor devices. He has developed laser-assisted fabrication techniques and MoS₂-based biosensors for healthcare and optoelectronic applications, fostering sustainable and low-power device technologies. A recipient of the Korean President’s Young Scientist Award and the Scientist of the Month Award by the National Research Foundation of Korea, he has earned national recognition for his research excellence. His academic leadership extends to editorial board service, peer reviewing for top-tier journals, and conference chairing in nanotechnology and materials science forums. Prof. Dr. Sunkook Kim’s laboratory at Sungkyunkwan University is a hub of interdisciplinary collaboration, supported by multiple national and industrial funding projects, advancing Korea’s competitiveness in nanomaterials research and flexible electronics. His continuing innovations are redefining frontiers in next-generation semiconductors, photonic devices, and intelligent sensing systems.
Profiles: Scopus | ORCID | Google Scholar | ResearchGate | Sci Profiles | IEEE Xplore
Featured Publications
1. Kim, S., Konar, A., Hwang, W. S., Lee, J. H., Lee, J., Yang, J., Jung, C., Kim, H., … (2012). High-mobility and low-power thin-film transistors based on multilayer MoS₂ crystals. Nature Communications, 3(1), 1011.
2. Choi, W., Cho, M. Y., Konar, A., Lee, J. H., Cha, G. B., Hong, S. C., Kim, S., Kim, J., … (2012). High‐detectivity multilayer MoS₂ phototransistors with spectral response from ultraviolet to infrared. Advanced Materials, 24(43), 5832–5836.
3. Liu, N., Kim, P., Kim, J. H., Ye, J. H., Kim, S., & Lee, C. J. (2014). Large-area atomically thin MoS₂ nanosheets prepared using electrochemical exfoliation. ACS Nano, 8(7), 6902–6910.
4. Kim, S., Kwon, H. J., Lee, S., Shim, H., Chun, Y., Choi, W., Kwack, J., Han, D., … (2011). Low-power flexible organic light-emitting diode display device. Advanced Materials, 23(31), 3511–3516.
5. Lee, J., Dak, P., Lee, Y., Park, H., Choi, W., Alam, M. A., & Kim, S. (2014). Two-dimensional layered MoS₂ biosensors enable highly sensitive detection of biomolecules. Scientific Reports, 4(1), 7352.