Prof. Dr. Javad Foroughi | Smart materials | Best Researcher Award

Prof. Dr. Javad Foroughi | Smart materials | Best Researcher Award

Prof. Dr. Javad Foroughi , University of New South Wales, Australia

Dr. Javad Foroughi 🧠 is a globally recognized expert in smart materials, serving as a Visiting Professor at the University of Essen 🇩🇪 and a Senior Research Fellow at UNSW 🇦🇺. He is a DECRA Fellow 🎓 of the Australian Research Council and renowned for pioneering torsional carbon nanotube artificial muscles 🧵, featured in Science (2011). With a PhD in Material Engineering from the University of Wollongong 🇦🇺, Dr. Foroughi’s innovative work spans artificial muscles, wearable tech 👕, and soft robotics 🤖. He has led multidisciplinary collaborations in biomedical innovation 🏥 and secured over $7M in competitive research grants 💰.

Professional Profile:

Scopus

Orcid

Summary of Suitability for Best Researcher Award

Dr. Javad Foroughi is a world-class researcher at the forefront of smart materials, wearable technologies, and biomedical devices. With a research career spanning over two decades and institutions in Australia, Germany, the U.S., South Korea, and Iran, he has made outstanding contributions to polymer science, soft robotics, and artificial muscles. As a senior research fellow and leader at UNSW and IHMRI, his work has translated advanced material innovations into clinical and industrial applications. His achievements, including high-impact publications, multiple prestigious awards, and successful supervision of PhD candidates, make him a leading authority in his field and an ideal recipient for a Best Researcher Award.

🔹 Education & Experience

📘 Education:

  • 🎓 PhD in Material Engineering, University of Wollongong (2006–2009)

  • 🎓 BSc & MSc in Polymer Materials Science, Isfahan University of Technology, Iran (1991–1997)

💼 Employment/Experience:

  • 👨‍🏫 Visiting Professor, University of Essen, Germany (2020–Present)

  • 🧪 Senior Research Fellow, UNSW (2021–Present)

  • 🏥 Lead, Diagnostics & Therapeutics Program, IHMRI

  • 🧵 Senior Research Fellow, Intelligent Polymer Research Institute, UOW (2016–2020)

  • 🔬 ARC DECRA Fellow, ARC Centre of Excellence for Electromaterials Science (2013–2016)

  • 🌏 Visiting Fellow, Hanyang University (South Korea), University of Texas at Dallas (USA)

  • 👨‍🔬 Postdoctoral Fellow and Research Associate, UOW (2009–2011)

🔹 Professional Development

Dr. Foroughi’s professional journey reflects a deep commitment to innovation and interdisciplinary research 🌐. His collaborative leadership spans top institutions across Germany, Australia, South Korea, and the U.S. 🤝. He has supervised 15 PhD candidates 🎓 and mentored researchers in cutting-edge projects involving artificial muscles, biomedical devices 🦾, and smart textiles 👚. Through roles at UNSW, UOW, and IHMRI, he has played a central role in translating lab-scale innovations into real-world applications 💡. His research leadership has contributed to health monitoring systems, drug delivery devices 💊, and soft robotics, earning him a reputation as a pioneer in smart materials 🚀.

🔹 Research Focus 

Dr. Foroughi’s research focuses on smart materials with applications in soft robotics 🤖, artificial muscles 🧵, and wearable technology 👕. He explores advanced functional materials like carbon nanotubes and hydrogels to engineer responsive systems for biomedical devices 🏥, drug delivery 💊, and ventricular assist devices ❤️. His interdisciplinary work integrates polymer science 🧪, nanotechnology 🔬, and mechatronic engineering ⚙️, fostering innovation in next-gen electronics and healthcare. His collaborative efforts across academia and industry have produced high-impact publications 📚 and breakthrough technologies that are redefining possibilities in health monitoring and smart textile applications 📈.

🔹 Awards & Honors 

🏆 Major Awards & Recognitions:

  • 🥇 ARC DECRA Fellowship (2013–2016)

  • 🧠 Emerging Research Fellow, IHMRI

  • 📘 Top Cited Paper, Advanced Materials Technologies (2020–2021)

  • ✍️ Editor’s Choice Article, MDPI Fibers (2019)

  • 🌟 Best of Advanced Materials Technologies (2020)

  • 🧵 IEEE Award for “Smart Fabrics and Networked Clothing” (2017)

  • 🧬 Asia Nanotech Camp Fellowship (2009, Taiwan)

  • 🥇 Winner, UOW Pitch Competition – Nerve Reconstruction (2014)

  • 🥇 Gold Award, R&D 100 – Artificial Muscles from Fishing Line (2015)

  • 🏅 Commercialisation Training Scheme Scholar, UOW

  • 🎓 Australian Research Scholarship for Advanced Materials (2008)

  • 🥈 Finalist, Trailblazer Award, UOW (2008)

  • 🥇 First Rank, BSc in Polymers Department, Isfahan University

Publication Top Notes:

  • Title: Advanced Energy Harvesters and Energy Storage for Powering Wearable and Implantable Medical Devices
    Citations: 21

  • Title: Highly stretchable nanocomposite piezofibers: a step forward into practical applications in biomedical devices
    Citations: 3

  • Title: Contactless vital sign monitoring systems: a comprehensive survey of remote health sensing for heart rate and respiration in internet of things and sleep applications
    Citations: 1

  • Title: Manufacturing Ulvan Biopolymer for Wound Dressings
    Citations: 3

  • Title: Ab initio calculations of structural, electronic, optical, and magnetic properties of delafossite SMoO₂ (S = Na, K, Rb, Cs) for spintronics
    Citations: 1

Mr. Tengfei Cheng | Materials science | Best Researcher Award

Mr. Tengfei Cheng | Materials science | Best Researcher Award

Mr. Tengfei Cheng, Hefei General Machinery Research Institute Co., Ltd, China

Tengfei Cheng is a dedicated engineer specializing in materials science and hydrogen storage technology. Currently serving at Hefei General Machinery Research Institute in the Basic Research Department of Pressure Vessel and Pipeline Technology, he focuses on high-density adaptive solid-state hydrogen storage and high-entropy alloy materials. With a Master’s degree in Materials Science and Engineering from Shanghai University, he has previously worked as an assistant engineer at the Yunnan Innovation Institute of Beijing University of Aeronautics and Astronautics. His contributions to hydrogen storage materials and alloy research have been recognized through multiple prestigious research grants. 🚀🔩

Professional Profile:

Scopus

Orcid

Suitability for Best Researcher Award 🏆🔬

Tengfei Cheng is a strong candidate for the Best Researcher Award due to his pioneering contributions to hydrogen storage technology, high-entropy alloys, and materials science. His work at Hefei General Machinery Research Institute plays a crucial role in developing high-density adaptive solid-state hydrogen storage systems, which are essential for the future of clean energy and sustainable fuel storage. His research in pressure vessel and pipeline technology ensures safer and more efficient hydrogen storage solutions, addressing critical challenges in the energy sector.

Education & Experience 🎓🔬

📌 Shanghai University – Master’s in Materials Science & Engineering (2018-2021)
📌 Shanghai University – Bachelor’s in Materials Science & Engineering (2014-2018)
📌 Hefei General Machinery Research Institute – Engineer (2021-Present)
📌 Yunnan Innovation Institute, Beijing University of Aeronautics & Astronautics – Assistant Engineer (2021)

Professional Development 🚀📚

Tengfei Cheng has dedicated his career to advancing materials science with a strong emphasis on hydrogen storage and high-entropy alloys. At Hefei General Machinery Research Institute, he focuses on pipeline technology and pressure vessel materials, ensuring safe and efficient energy storage solutions. His prior role at Yunnan Innovation Institute involved cutting-edge new material research, deepening his expertise in structural alloys and nanomaterials. With a commitment to scientific innovation, he actively participates in industry research projects andcollaborates on high-impact studies in the field of energy storage. 🔬⚙️

Research Focus 🔍🔬

Tengfei Cheng’s research revolves around hydrogen storage materials and high-entropy alloys for energy applications. His work explores the uniformization preparation of titanium-based alloys and their storage capabilities, aiming to enhance hydrogen storage density and safety. He is particularly interested in adaptive solid-state hydrogen storage systems, which are crucial for the future of clean energy technologies. His studies contribute to the development of innovative materials for sustainable energy solutions, making advancements in pipeline safety and pressure vessel engineering. 🚀⚡🔋

Awards & Honors 🏆🎖️

🏅 China National Machinery Industry Corporation Grant – High-Density Adaptive Solid-State Hydrogen Storage System (2024-2027)
🏅 Hefei General Machinery Research Institute Grant – Titanium-Based High-Entropy Alloys for Hydrogen Storage (2023-2025)

Publication Top Notes:

  • 🔋 “Enhanced Lithium Polysulfide Conversion via the Second Current Collector Based on Multitransition-Metal-Phosphides for Li–S Batteries”
  • ⚗️ “Thiol-Assisted Regulated Electronic Structure of Ultrafine Pd-Based Catalyst for Superior Formic Acid Electrooxidation Performances”
  • 🧲 “Topological Insulator Heterojunction with Electric Dipole Domain to Boost Polysulfide Conversion in Lithium‐Sulfur Batteries”
  • “Functionalized Polyethylene Separators with Efficient Li-Ion Transport Rate for Fast-Charging Li-Ion Batteries”
  • 🏗️ “Study on the Microstructure and Mechanical Properties of Al–Cu–Mg Aluminum Alloy Based on Molecular Dynamics Simulation”

 

Prof. Haocheng Quan | Materials | Best Researcher Award

Prof. Haocheng Quan | Materials |Best Researcher Award

Prof. Haocheng Quan, Nanjing University, China

Dr. Haocheng Quan 🎓🔬, an Associate Professor at Nanjing University 🇨🇳, is a leading researcher in bioinspired materials and advanced manufacturing technologies. With over a decade of academic and research experience, his work bridges biology and engineering, focusing on sustainable solutions 🌱 and innovative biomedical applications 🏥. He earned his Ph.D. in Materials Science from the University of California, San Diego 🇺🇸, and advanced bioinspired designs during his postdoctoral research at INM – Leibniz Institute in Germany 🇩🇪. Dr. Quan’s groundbreaking contributions to bioinspired structural materials and mechanics have been featured in prestigious journals like Nature Reviews Materials 🏆.

Professional Profile:

Scopus

Suitability Summary for Best Researcher Award: Dr. Haocheng Quan

Dr. Haocheng Quan is a standout candidate for the Best Researcher Award due to his exceptional contributions to bioinspired materials and advanced manufacturing technologies. His work is a perfect blend of scientific innovation and practical application, addressing critical challenges in sustainability, biomedical engineering, and wearable technologies. With his advanced academic background and cutting-edge research, Dr. Quan has established himself as a global thought leader in bioinspired materials science.

Education and Experience 

Education:

  • 🎓 Ph.D. in Materials Science and Engineering, UC San Diego (2019)
  • 🎓 M.S. in Materials Science and Engineering, UC San Diego (2015)
  • 🎓 B.E. in Materials Science and Engineering, Donghua University, China (2013)

Experience:

  • 🧑‍🏫 Associate Professor, Nanjing University, China (Dec 2023 – Present)
  • 🧪 Postdoctoral Researcher, INM – Leibniz Institute, Germany (Feb 2020 – Jul 2023)

Professional Development 

Dr. Quan’s professional journey reflects his dedication to bioinspired innovation 🌟. At Nanjing University, he mentors students and leads pioneering research in bioinspired structural and functional materials 🦎📐. During his postdoctoral tenure at INM – Leibniz Institute, he focused on gecko-inspired adhesion technologies 🦎🧲, kirigami-inspired microstructures ✂️, and bioinspired stinger designs 🐝. His work combines biomechanics and materials science to create sustainable solutions 🌿 for biomedical applications 🩺 and wearable technologies ⌚. With a collaborative spirit 🤝, he continues to expand the horizons of engineering inspired by nature’s remarkable strategies 🌍.

Research Focus 

Dr. Quan’s research explores the fascinating intersection of biology and engineering 🔬🦠. He specializes in the mechanics of biological materials 💪🪵, bioinspired adhesion systems 🦎🧲, and actuation technologies for sustainable applications 🌿. His innovative studies include gecko-inspired dry adhesives 🦎, bioinspired microneedles 💉, and kirigami-based designs ✂️. Dr. Quan is particularly interested in wearable electronics for health monitoring 🩺⌚, optical properties of biological materials 🌈, and active defense mechanisms in natural systems 🐟🛡️. His work demonstrates a commitment to developing multifunctional, sustainable solutions for medical, technological, and structural challenges 🚀.

Awards and Honors 

  • 🏆 Featured Researcher in Nature Reviews Materials and Advanced Functional Materials.
  • 🥇 Co-author of over 20 high-impact publications 📚.
  • 🌟 First/Co-corresponding Author in multiple leading journals 🔬.
  • 🎖️ Recognized Speaker at international conferences like TMS Annual Meeting 🌐.
  • 🧠 Awarded Postdoctoral Fellowship for groundbreaking work at INM – Leibniz Institute 🏅.

Publication Top Notes:

📜 “The shape of Nature’s stingers revealed” by H. Quan, X. Liang, X. Zhang, R.M. McMeeking, and E. Arzt, published in Proceedings of the National Academy of Sciences of the United States of America (2024), cited by 5. 🔬📖

 

Mr. Peter Adeyemo | Materials science | Young Scientist Award

Mr. Peter Adeyemo | Materials science | Young Scientist Award

Mr. Peter Adeyemo, Federal University of Agriculture, Abeokuta, Nigeria

Peter Adeyemo 🎓 is an accomplished physicist from the Federal University of Agriculture, Abeokuta (FUNAAB), Nigeria. With a Bachelor of Science in Physics, he graduated with distinction, earning a top rank in his class. His research interests lie in experimental condensed matter physics, quantum materials science, and quantum information science. Peter has contributed significantly to computational modeling and machine learning, specifically in predicting phase transitions in the Ising model. In addition to his research, he has a strong background in teaching, software engineering, and leadership, making him a well-rounded academic and researcher. 🌟🔬

Professional Profile:

Scopus

Suitability for the Young Scientist Award

Peter Adeyemo is an excellent candidate for the Young Scientist Award due to his outstanding academic achievements, innovative research, and contributions to computational and experimental physics.

Education and Experience

🎓 Education

  • B.Sc. in Physics, Federal University Of Agriculture, Abeokuta (FUNAAB), Nigeria (April 2019 – December 2023)
    • GPA: 4.72/5.00, Class Rank: 2/110
    • Thesis: Machine Learning-assisted prediction of phase transitions in two-dimensional Ising model.

💼 Experience

  • Graduate Research Assistant, Dr. P.O Adebambo’s group, FUNAAB (March 2024 – Present)
  • Graduate Research Assistant, Prof. A.O Mustapha’s group, FUNAAB (March 2023 – November 2023)
  • Graduate Research Assistant, Dr. S.A Ganiyu’s group, FUNAAB (March 2024 – Present)
  • Tutor, Deeper Life Campus Fellowship, FUNAAB (2021–2023)
  • Software Engineering Intern, TedPrime Hub, Abeokuta (March 2022–September 2022)

Professional Development

Peter Adeyemo 💡 is an emerging scholar who has quickly developed expertise in quantum materials science and machine learning. His graduate research assistantships at FUNAAB have allowed him to explore computational physics, working with algorithms to predict phase transitions. In addition, his internship at TedPrime Hub provided hands-on experience in software engineering, where he led the development of a computer-based testing application. His teaching experience further bolstered his academic profile, guiding students in physics and calculus. Peter continues to advance his career with certifications in cloud computing and deep learning. 🌍🧠

Research Focus

Peter Adeyemo’s research focuses on experimental condensed matter physics 🧪, with particular emphasis on quantum materials science and quantum information science. He is dedicated to utilizing machine learning algorithms and computational techniques to study phase transitions in systems like the Ising model. His work in quantum materials includes understanding electronic and thermoelectric properties of novel materials, often using first-principles calculations. Additionally, Peter applies computational tools like Quantum Espresso and deep learning frameworks to predict material behaviors, pushing the boundaries of both materials science and quantum computing. 🌌🖥️

Awards and Honors

🏅 Petroleum Development Funds In-country Scholar: Awarded to top-tier STEM students in Nigeria (February 2023)
🥇 First Runner-up: Inter-varsity Physics Contest, University of Ibadan (September 2021)
🎓 Best Student: Electromagnetism, X-ray Crystallography, Structural Analysis, Classical Mechanics, Nuclear Physics (December 2023)
🏆 Dean’s Honor Award: Outstanding academic performance (2021–2023)
🎖 Senate Prize: First Class Honours Award (December 2023)

Publication Top Notes:

  • 📜 Structural, Electronic and Thermoelectric Properties of NiScBi and PdScBi Half-Heusler Alloys from First Principles
  • 📜 Influence of Substrate Temperature and Deposition Time in Energy Band Gap Characteristic of Lead Sulfide Thin Film  – Cited by: 1 📉

 

 

Prof. Dr. Wenxing Zhang | Material | Best Researcher Award

Prof. Dr. Wenxing Zhang | Material | Best Researcher Award

Prof. Dr. Wenxing Zhang, Hanshan Normal University, China

Zhang Wenxing, PhD 🧑‍🔬, is a Full Professor specializing in material simulation and design. A 2009 graduate from the Institute of Physics, Chinese Academy of Sciences (Physics) 🎓, and IEMN (CNRS), France (Materials Science) 🇫🇷, he has advanced the fields of nanomaterials and device simulations. Dr. Zhang has authored over 60 SCI papers 📄, holds six patents in China 📜, and published a monograph 📘. He has completed four funded research projects 🔬 and received prestigious awards, including the First Prize for Scientific and Technological Progress in Beijing 🏆 and Shanxi’s Award for Excellent Scientific Papers 🌟.

Professional Profile:

Scopus

Suitability for the Best Researcher Award

Dr. Zhang Wenxing is an outstanding candidate for the Best Researcher Award due to his pioneering work in nanomaterials and device simulations. His exceptional academic and professional achievements underscore his contributions to the advancement of materials science and nanotechnology. Below is a summary of his suitability

Education & Experience:

  • 🎓 2009: PhD in Physics, Institute of Physics, Chinese Academy of Sciences, China
  • 🇫🇷 2009: PhD in Materials Science, IEMN (CNRS), France
  • 🧑‍🏫 Full Professor conducting research in material simulation and nanomaterial design.

Professional Development:

Dr. Zhang Wenxing has made remarkable contributions in the simulation and design of nanomaterials and devices 🌐. His research has been published in top-tier journals in materials science, physics, and chemistry 📚. With over 60 SCI-indexed papers 📑, six patents in China 📜, and one monograph 📘, he stands as a leading expert in his field. Dr. Zhang has led and completed two National Natural Science Foundation of China projects 🇨🇳 and two Guangdong Provincial projects 🌏. His innovations in nanomaterial design continue to push the boundaries of modern technology 🚀.

Research Focus:

Dr. Zhang’s research centers on simulation and design of nanomaterials and devices 🧬. His work bridges physics, materials science, and chemistry 🔗, offering groundbreaking insights into nanomaterial behavior and application. Using computational techniques, he develops innovative solutions for advanced technologies 💻. His focus includes modeling new material properties 🧪 and optimizing nano-devices for improved performance ⚙️. By integrating simulation with experimental design 🔬, Dr. Zhang’s research contributes significantly to the advancement of nanotechnology 🌟, supporting applications in energy, electronics, and material sciences ⚡.

Awards & Honors:

  • 🏆 First Prize for Scientific and Technological Progress, Beijing
  • 🌟 Award for Excellent Scientific Papers, Shanxi Province
  • 📜 Holder of six authorized patents, China
  • 📘 Published one monograph on materials science and simulation
  • 📚 Authored over 60 SCI papers in top journals worldwide

Publication Top Notes:

  • Title: Pd and Pd-B modified g-CN monolayer as innovative sensor and scavenger for CO, NO2, C2H2, and C2H4: A DFT study
    Citations: 3
  • Title: Harnessing a simple ratiometric fluorescent probe for albumin recognition and beyond
    Citations: 1
  • Title: Multi-Band Emission of Pr3+-Doped Ca3Al2O6 and the Effects of Charge Compensator Ions on Luminescence Properties
    Citations: 1
  • Title: Pd, Ag decorated MoSi2N4 monolayer: A potential material for reusable CO and NO gas-sensitive material with high sensitivity
    Citations: 1
  • Title: Boosting the Self-Trapped Exciton Emission in Cs4SnBr6 Zero-Dimensional Perovskite via Rapid Heat Treatment
    Citations: 9

 

Dr. Abdul Majeed Shar | Nanomaterials Awards | Best Researcher Awards

Dr. Abdul Majeed Shar | Nanomaterials Awards | Best Researcher Awards

Dr. Abdul Majeed Shar, NED university of Engineering and Technology, Pakistan

Dr. Abdul Majeed Shar is an Assistant Professor in the Petroleum Engineering Department at NED University of Engineering and Technology, Karachi. He holds a Ph.D. in Petroleum Engineering from the University of Leeds, UK, and an M.S. from Heriot Watt University, UK. With over a decade of academic experience, he has been actively involved in teaching and supervising undergraduate and graduate students in various petroleum engineering disciplines. His research interests span petroleum production, reservoir engineering, and unconventional reservoirs. Dr. Shar has received several honors and awards, including research funding and scholarships from prestigious organizations. He is also a member of technical and professional committees and serves on editorial boards of reputed journals. Dr. Shar has contributed significantly to conferences and workshops, both as a speaker and as part of organizing committees, showcasing his expertise in sustainable mineral resource development and unconventional hydrocarbon exploitation

Professional Profile:

Google Scholar

🎓Education:

Dr. Abdul Majeed Shar holds a Ph.D. in Petroleum Engineering from the University of Leeds, UK, and a Master of Science degree from Heriot Watt University, UK. With these qualifications, he has cultivated a robust academic foundation in petroleum engineering, complemented by over a decade of teaching and supervisory experience at the NED University of Engineering and Technology, Karachi. His research interests span critical areas such as petroleum production, reservoir engineering, and unconventional reservoirs. Dr. Shar has garnered recognition for his scholarly achievements, including research funding and scholarships from esteemed organizations. Additionally, he actively contributes to the advancement of his field through membership in technical committees, editorial roles for prestigious journals, and participation as both a speaker and organizer in conferences and workshops focusing on sustainable mineral resource development and unconventional hydrocarbon exploitation.

🏢Work Experience:

With over a decade of academic experience, Dr. Abdul Majeed Shar has demonstrated a deep commitment to advancing petroleum engineering education. He is actively engaged in teaching and supervising undergraduate and graduate students across a spectrum of petroleum engineering disciplines at the NED University of Engineering and Technology, Karachi. His dedication extends beyond the classroom, where he not only imparts theoretical knowledge but also mentors students in practical applications relevant to petroleum production, reservoir engineering, and unconventional reservoirs. Dr. Shar’s hands-on approach and extensive academic background enrich the learning experience, preparing future engineers to tackle complex challenges in the petroleum industry

🏆Honors and Awards:

Dr. Abdul Majeed Shar’s contributions to petroleum engineering have been recognized through numerous honors and awards, underscoring his significant impact in the field. He has received accolades that include prestigious research funding and scholarships from leading organizations. These honors not only highlight his expertise and dedication but also validate his innovative approach to addressing key challenges in petroleum production, reservoir engineering, and unconventional reservoirs. Dr. Shar’s achievements not only enhance his own scholarly reputation but also reflect his commitment to advancing the broader understanding and application of sustainable mineral resource development and unconventional hydrocarbon exploitation

Publication Top Notes:

  • Morphological and petrophysical estimation of Eocene tight carbonate formation cracking by cryogenic liquid nitrogen; a case study of Lower Indus basin, Pakistan
    • Cited By: 60
  • Effect of Cryogenic Liquid Nitrogen on the Morphological and Petrophysical Characteristics of Tight Gas Sandstone Rocks from Kirthar Fold Belt, Indus Basin, Pakistan
    • Cited By: 59
  • Could shale gas meet energy deficit: its current status and future prospects
    • Cited By: 38
  • Impact of confining stress on permeability of tight gas sands: an experimental study
    • Cited By: 37
  • Experimental evaluation of liquid nitrogen fracturing on the development of tight gas carbonate rocks in the Lower Indus Basin, Pakistan
    • Cited By: 30