Shixu Zhang | Nanomaterials | Best Researcher Award

Mr. Shixu Zhang | Nanomaterials | Best Researcher Award

Associate professor at Lanzhou University, China

Dr. Shixu Zhang is an Associate Professor at the School of Nuclear Science and Technology, Lanzhou University, China. He earned his Ph.D. and B.S. degrees in Particle and Nuclear Physics from Lanzhou University. His research focuses on thermoelectric and thermophotovoltaic isotope cells, molecular dynamics simulations for cluster beam deposition, and the transport behavior of protons, neutrons, and photons under external sources. Dr. Zhang has authored multiple peer-reviewed publications in high-impact journals such as Energy, Journal of Applied Physics, and Nuclear Instruments and Methods in Physics Research B. He has been serving in academic roles at Lanzhou University since 2014.

Professional Profile:

SCOPUS

ORCID

Summary of Suitability for Best Researcher Award: Mr. Shixu Zhang

Mr. Shixu Zhang, currently serving as an Associate Professor at the School of Nuclear Science and Technology, Lanzhou University, is a highly accomplished researcher whose work lies at the intersection of nuclear physics, energy conversion systems, and advanced material deposition techniques. With a Ph.D. in Particle and Nuclear Physics and over a decade of progressive academic experience, Mr. Zhang has significantly contributed to thermoelectric and thermophotovoltaic isotope cell development, molecular dynamics simulations, and accurate transport descriptions of protons, neutrons, and photons.

🎓 Education

  • 🧪 Ph.D. in Particle & Nuclear Physics
    Lanzhou University, China (2009–2014)

  • 🔬 B.S. in Applied Physics (Nuclear Physics Direction)
    Lanzhou University, China (2005–2009)

🧑‍🏫 Professional Experience

  • 👨‍🏫 Associate Professor, Lanzhou University (2018–Present)

  • 👨‍🔬 Assistant Professor, Lanzhou University (2014–2018)

🔍 Research Interests

  • ⚛️ Thermoelectric & Thermophotovoltaic Isotope Cells

  • 💻 Molecular Dynamics Simulation in Cluster Beam Deposition

  • 🌐 Accurate Transport Modeling for Protons, Neutrons & Photons

📚 Key Publications

  1. 🧱 Frustum-Shaped Thermoelectric Generators, Energy, 2021

  2. 🧲 Cu Cluster Deposition on Fe Substrates, Nucl. Instrum. Methods B, 2025

  3. 🌡️ Temperature Effects on Cluster Deposition, J. Appl. Phys., 2024

  4. 🔧 TEG Optimization by Heat Flux Modeling, Energy Technology, 2024

  5. 📐 Fe Substrate Orientations Impact on Cu55 Clusters, Nucl. Instrum. Methods B, 2021

🏆 Achievements & Honors

  • 🥇 Published in High-Impact Journals (Energy, Journal of Applied Physics)

  • 🧠 Lead Author in Thermoelectric Research Papers

  • 💡 Pioneer in Optimizing Cluster Deposition Techniques

  • 📈 Significant Contributions to Multiphysics Simulation for Nuclear Materials

Publication Top Notes

An optimized design approach concerning thermoelectric generators with frustum-shaped legs based on three-dimensional multiphysics model

Geometry design and performance optimization of a terrestrial radioisotope thermoelectric generator based on finite element analysis

Dynamic piezo-thermoelectric generator for simultaneously harvesting mechanical and thermal energies

Oxygen Vacancy-Induced Room Temperature Ferromagnetism in Rutile TiO<sub>2</sub>

 

 

QinghuaWei |Nanosensors and Actuators | Best Researcher Award

Assoc. Prof. Dr. Qinghua Wei | Nanosensors and Actuators | Best Researcher Award

Associate Professor at Northwestern Polytechnical University, China

Dr. Qinghua Wei, a distinguished Doctor of Engineering and doctoral supervisor, is recognized for his pioneering research in composite materials and biological additive manufacturing. As a recipient of the “Aerospace New Star” award from Northwestern Polytechnical University, he has led over ten major national projects and authored more than 80 high-impact publications, with over 1,600 SCI citations. His innovations have yielded 23 national patents, nine of which have been successfully commercialized, and ten software copyrights. Dr. Wei’s outstanding contributions have earned him prestigious honors, including the First Prize of the National Technology Invention Award and multiple provincial science and technology awards. His interdisciplinary work integrates materials science, 3D bioprinting, and biomedical engineering, with significant translational value. Listed among the world’s top 2% scientists by Stanford University, Dr. Wei exemplifies research excellence and innovation, with a commitment to advancing scientific knowledge and nurturing future scholars in advanced manufacturing and biomaterials.

Professional Profile 

Scopus Profile

Education

Dr. Qinghua Wei holds a Doctorate in Engineering, which has laid the foundation for his extensive academic and research career. His educational journey reflects a solid grounding in materials science, mechanical engineering, and manufacturing technologies. His doctoral training equipped him with the theoretical knowledge and practical skills necessary to address complex problems in composite material design and additive manufacturing. Through rigorous academic preparation, Dr. Wei developed a keen interest in integrating multiple disciplines such as biomaterials, mechanics, and process engineering. His academic background also provided the platform for his future role as a doctoral supervisor, mentoring graduate students and guiding innovative research projects. His education has not only shaped his technical capabilities but also cultivated his analytical thinking and leadership qualities, enabling him to lead national-level projects and secure recognition within the scientific community. His commitment to lifelong learning continues to inform his work in advanced manufacturing and biomedical applications.

Professional Experience

Dr. Qinghua Wei is a seasoned researcher and doctoral supervisor at Northwestern Polytechnical University, where he also earned recognition through the “Aerospace New Star” science and technology talent program. Over the course of his career, he has led more than ten high-level research projects, including those funded by the National Natural Science Foundation of China and the State Key Research and Development Program. His responsibilities extend beyond research to include project management, academic mentorship, and technology transfer. Dr. Wei has an impressive track record of publishing over 80 peer-reviewed articles and two academic monographs, which have earned wide citation and acclaim. He has also played a pivotal role in translating research into practice, with 23 national invention patents—nine of which have been successfully commercialized. His experience reflects a balanced integration of scientific inquiry, educational mentorship, and innovation-driven entrepreneurship, positioning him as a thought leader in additive manufacturing and materials science.

Research Interest

Dr. Qinghua Wei’s research interests lie at the intersection of composite materials, 3D bioprinting, and biomedical manufacturing. His work focuses on the multi-scale design and functional modification of composite materials for high-performance applications. A major area of emphasis is the development of biological additive manufacturing technologies, including novel bio-inks, smart hydrogels, and multi-material extrusion systems for 3D printing. He has contributed significantly to tissue engineering, particularly in the fabrication of bone scaffolds, skin substitutes, and soft tissue constructs using biocompatible hydrogels. His work also explores the optimization of printing parameters through numerical modeling and simulation, ensuring both structural integrity and cell viability. By integrating mechanical design, material science, and bological systems, Dr. Wei is pioneering advanced solutions with both clinical and industrial relevance. His interdisciplinary research not only advances fundamental science but also offers practical tools and technologies that address challenges in healthcare, aerospace, and precision manufacturing.

Award and Honor

Dr. Qinghua Wei has received numerous awards and honors that underscore his contributions to science and technology. Most notably, he was awarded the First Prize of the National Technology Invention Award in 2019, a prestigious national recognition of groundbreaking research with significant impact. He has also received the Second Prize of the Shaanxi Provincial Natural Science Award (2024) and the First Prize of the Shaanxi Provincial University Science and Technology Award in 2024, 2020, and 2016, demonstrating sustained excellence over the years. In 2023, his research was evaluated as qualified by the International Association for Science and Technology Promotion of China. Furthermore, his scientific output has earned him a place in Stanford University’s list of the world’s top 2% scientists, reflecting both national and international acknowledgment. These honors affirm Dr. Wei’s leadership in his field and validate the relevance, originality, and societal value of his research contributions.

Conclusion

In summary, Dr. Qinghua Wei is an accomplished researcher whose academic rigor, innovative spirit, and translational impact make him a standout figure in engineering and applied sciences. With a solid educational foundation, extensive project leadership, and cutting-edge interdisciplinary research, he bridges theory and real-world application in fields such as composite materials and 3D bioprinting. His work has led to high-impact publications, patent commercialization, and influential collaborations, reflecting both depth and breadth in his expertise. Dr. Wei’s career is marked by a consistent trajectory of excellence, as evidenced by prestigious national awards and global scientific recognition. As a mentor, inventor, and thought leader, he continues to shape the future of advanced manufacturing and biomedical engineering. His accomplishments not only enhance academic knowledge but also contribute to technological innovation with societal benefits. Dr. Wei is undoubtedly a strong candidate for major research accolades and an exemplar of excellence in modern engineering research.

Publications Top Notes

  • Title: A triple-network PVA/cellulose nanofiber composite hydrogel with excellent strength, transparency, conductivity, and antibacterial properties

    • Authors: Li, Mingyang; Wang, Yanen; Wei, Qinghua; Liu, Zhisheng

    • Year: 2025

  • Title: 3D printing of microstructured polyacrylamide/sodium alginate/lithium chloride composite hydrogels for nanofriction generator and e-skin

    • Authors: Chen, Xiaohu; Wang, Qinglin; Ma, Shuai; Xu, Yan; Wang, Yanen

    • Year: 2025

    • Citations: 1

  • Title: Investigation of wet-heat coupling and hygroscopic behavior of moso bamboo

    • Authors: Hong, Qi; Wei, Qinghua; Lan, Xianwei; Yuan, Jing

    • Year: 2025

  • Title: Optimal design of multi-biomaterials mixed extrusion nozzle for 3D bioprinting considering cell activity

    • Authors: Wei, Qinghua; An, Yalong; Zhao, Xudong; Zhang, Juan; Cui, Ning

    • Year: 2025

  • Title: Influence of particle size distribution on hydroxyapatite slurry and scaffold properties fabricated using digital light processing

    • Authors: Liu, Minyan; Wang, Yanen; Zhang, Haonan; Liu, Zhisheng; Liu, Xiaowu

    • Year: 2024

    • Citations: 3

  • Title: Research on the flow behavior of bio-ink inside the extrusion nozzle during printing

    • Authors: Wei, Qinghua; An, Yalong; Li, Mingyang; Zhao, Xudong

    • Year: 2024

  • Title: Optimization of hydrogel extrusion printing process parameters based on numerical simulation

    • Authors: Wei, Qinghua; Li, Mingyang; An, Yalong; Zhao, Xudong; Sun, Daocen

    • Year: 2024

Dr. Byung-Wook Kim | Nanomaterials | Best Researcher Award

Dr. Byung-Wook Kim | Nanomaterials | Best Researcher Award

Dr. Byung-Wook Kim, Columbia University, United States

Dr. Byung-Wook Kim is an Associate Research Scientist at Columbia University, specializing in nanomaterials, energy harvesting, and thermal management. With a Ph.D. in Materials Science & Engineering from UCSD 🎓, his work focuses on advanced materials for thermal and electrical applications. Previously, he was a Senior Research Engineer at Hyundai Motor Company 🚗, where he contributed to energy-efficient automotive materials. Dr. Kim has received prestigious awards 🏆 and has published extensively in high-impact journals. His collaborations with Columbia Nano Initiative and leading researchers drive advancements in radiative cooling, thermoelectrics, and polymer nanocomposites.

Professional Profile:

Orcid

Suitability of Dr. Byung-Wook Kim for the Best Researcher Award 🏆

Dr. Byung-Wook Kim is a leading researcher in nanomaterials, energy harvesting, and thermal management, making groundbreaking contributions to radiative cooling, thermoelectrics, and polymer nanocomposites. His expertise spans both academia and industry, with notable contributions at Columbia University and Hyundai Motor Company. His high-impact publications, prestigious awards, and pioneering research in sustainable energy solutions position him as a strong candidate for the Best Researcher Award.

Education & Experience 🎓👨‍🔬

  • Ph.D. in Materials Science & Engineering – University of California, San Diego (UCSD) 🏛️

  • M.S. in Applied Physics – University of California, San Diego (UCSD) ⚛️

  • B.S. in Physics – Hanyang University, Seoul 🇰🇷

  • Associate Research Scientist – Columbia University 🏢

  • Senior Research Engineer – Hyundai Motor Company 🚘

  • Postdoctoral Researcher – Advanced materials and energy systems 🔬

Professional Development 🚀

Dr. Byung-Wook Kim has been at the forefront of nanomaterials, energy storage, and thermoelectric technology. His expertise extends to radiative cooling, polymer composites, and photonic structures, enhancing energy efficiency across multiple sectors. At Columbia University, he collaborates with top researchers on breakthrough materials. His industrial experience at Hyundai Motor Company helped develop high-performance energy solutions for automotive applications. A dedicated researcher, Dr. Kim actively participates in Columbia Nano Initiative and energy research centers. With numerous high-impact publications and awards, he remains a key contributor to advancing sustainable and efficient energy technologies 🌍🔋.

Research Focus 🔬

Dr. Byung-Wook Kim’s research primarily revolves around nanomaterials, thermal management, and energy harvesting. His work explores carbon nanotube-polymer composites for enhanced electrical and thermal conductivity, as well as radiative cooling materials to improve energy efficiency ☀️❄️. He is also involved in developing thermoelectric materials that convert waste heat into usable energy ⚡. His contributions extend to photonic structures, advanced composites, and sustainable energy storage solutions. At Columbia University, he collaborates on next-generation energy systems, pushing the boundaries of nanotechnology and applied physics for real-world applications in clean energy and thermal regulation 🌱🔋.

Awards & Honors 🏆🎖️

  • 🏅 Nanoscale Horizons Outstanding Paper Award (2023) – Recognized for excellence in nanomaterials research
  • 🏆 Excellence in Advanced Technology (2019) – Hyundai Motor Company, for contributions to advanced energy-efficient materials
  • 📜 Multiple High-Impact Publications – Featured in Light: Science & Applications, Journal of Applied Physics, Nanomaterials
  • 🎓 Research Grants & Fellowships – Funding for cutting-edge energy and materials research
  • 🔬 Columbia Nano Initiative Affiliation – Recognized researcher in advanced materials and nanotechnology

Publication Top Notes:

  • 🏭 Abrasion Effect on Heating Performance of Carbon Nanotube/Epoxy Composites
  • 🌱 Bio-Based Phase Change Materials for Sustainable Development
  • 📏 Thermoelastic Modeling of Cubic Lattices from Granular Materials to Atomic Crystals
  • An Ag–Au-PANI Core–Shell Nanowire Network for Visible-to-Infrared Data Encryption and Supercapacitor Applications
  • ☀️ Photonic Structures in Radiative Cooling

 

Dr. Jabrah Alkorbi | Functional Nanomaterials Award | Best Researcher Award

Dr. Jabrah Alkorbi | Functional Nanomaterials Award | Best Researcher Award

Dr. Jabrah Alkorbi , The university of Sheffield, Saudi Arabia

Jabrah Naji Alkorbi is a highly skilled Analytical Chemist with over a decade of experience in academia and research. Based in Saudi Arabia, she is a Lecturer in the Department of Chemistry at Prince Sattam bin Abdulaziz University. Jabrah’s expertise spans surface analysis of layered polymer brushes, rapid capillary electrophoretic separation, and advanced analytical techniques. She holds a PhD in Chemistry from the University of Sheffield, where her research focused on XPS depth profiling of polymer brushes. She is fluent in Arabic and English and has strong technical skills in Microsoft Office, Origen Lab, CASA, and Nanoscope. Passionate about education, Jabrah excels in classroom management, curriculum development, and research supervision. Beyond academia, she actively participates in conferences and has authored impactful publications in nanomaterials and analytical chemistry.

Professional Profile:

Orcid

Evaluation for “Best Researcher Award”

Suitability Summary

Dr. Jabrah Naji Alkorbi demonstrates a strong profile as a candidate for the “Best Researcher Award” based on her extensive academic background, professional achievements, and innovative contributions to chemistry. Here’s a detailed analysis of her suitability

🎓Education

Jabrah Naji Alkorbi holds a PhD in Chemistry from the University of Sheffield (2023), specializing in XPS Depth Profiling Analysis of Polymer Brushes using an Argon Gas Cluster Ion Source. Her research contributed novel insights into surface characterization techniques. She earned a Master’s in Analytical Chemistry from University College Cork, where her thesis focused on rapid capillary electrophoretic separation of pyocyanin and quorum sensing signaling molecules. Jabrah also completed a Postgraduate Diploma at Dublin International Foundation College, excelling in Academic English, Research Methods, and ICT. Her academic journey began with a Bachelor’s in Chemistry (Scientific and Educational) from Najran University, where she achieved an 84% grade. This robust educational foundation reflects her dedication to chemistry and research, underscoring her technical prowess and passion for advancing analytical methodologies.

🏢Professional Experience

Jabrah Naji Alkorbi is a seasoned educator and researcher with significant experience in academia. As a Lecturer in the Department of Chemistry at Prince Sattam bin Abdulaziz University, she delivers engaging lectures, conducts laboratory sessions, and supervises student research projects. Previously, she trained under the Saudi Ministry of Education, where she taught chemistry courses, designed lesson plans, and evaluated student performance. Her work is marked by innovative teaching techniques and a commitment to quality education. In research, Jabrah has advanced analytical chemistry through her expertise in XPS depth profiling, capillary electrophoretic separation, and polymer surface analysis. Her ability to bridge teaching and cutting-edge research makes her a respected figure in her field.

🏅Awards and Honors

Provisionally selected for the “Best Researcher Award” by the ANN Awards Organizing Committee for her publication on nanofibrous membranes.Successfully completed prestigious training courses in e-learning strategies, quality in education, and the Blackboard system.
Participated in notable events such as the Women in Chemistry Conference (University of Nottingham) and the 9th Annual Conference in Chemical Nanoscience (Newcastle). Consistently recognized for her dedication to education, research, and innovative contributions to analytical chemistry.

🔬Research Focus

Jabrah Naji Alkorbi’s research centers on advancing analytical chemistry, particularly surface analysis techniques and nanomaterials. Her PhD work involved using XPS depth profiling to investigate polymer brushes, leveraging Argon Gas Cluster Ion Source technology. This innovative approach has significant implications for material science and nanotechnology. She has also contributed to rapid capillary electrophoretic separation, focusing on detecting pyocyanin and quorum sensing signaling molecules. Additionally, her work on encapsulating anthocyanidin in polyvinyl alcohol nanofibrous membranes for smart packaging underscores her interdisciplinary expertise. Jabrah’s research bridges chemistry, nanomaterials, and real-world applications, enhancing both academic understanding and industrial innovation.

Publication Top Notes:

Fabrication of Anthocyanidin-Encapsulated Polyvinyl Alcohol Nanofibrous Membrane for Smart Packaging