Prof. Dr. Javad Foroughi | Smart materials | Best Researcher Award

Prof. Dr. Javad Foroughi | Smart materials | Best Researcher Award

Prof. Dr. Javad Foroughi , University of New South Wales, Australia

Dr. Javad Foroughi 🧠 is a globally recognized expert in smart materials, serving as a Visiting Professor at the University of Essen 🇩🇪 and a Senior Research Fellow at UNSW 🇦🇺. He is a DECRA Fellow 🎓 of the Australian Research Council and renowned for pioneering torsional carbon nanotube artificial muscles 🧵, featured in Science (2011). With a PhD in Material Engineering from the University of Wollongong 🇦🇺, Dr. Foroughi’s innovative work spans artificial muscles, wearable tech 👕, and soft robotics 🤖. He has led multidisciplinary collaborations in biomedical innovation 🏥 and secured over $7M in competitive research grants 💰.

Professional Profile:

Scopus

Orcid

Summary of Suitability for Best Researcher Award

Dr. Javad Foroughi is a world-class researcher at the forefront of smart materials, wearable technologies, and biomedical devices. With a research career spanning over two decades and institutions in Australia, Germany, the U.S., South Korea, and Iran, he has made outstanding contributions to polymer science, soft robotics, and artificial muscles. As a senior research fellow and leader at UNSW and IHMRI, his work has translated advanced material innovations into clinical and industrial applications. His achievements, including high-impact publications, multiple prestigious awards, and successful supervision of PhD candidates, make him a leading authority in his field and an ideal recipient for a Best Researcher Award.

🔹 Education & Experience

📘 Education:

  • 🎓 PhD in Material Engineering, University of Wollongong (2006–2009)

  • 🎓 BSc & MSc in Polymer Materials Science, Isfahan University of Technology, Iran (1991–1997)

💼 Employment/Experience:

  • 👨‍🏫 Visiting Professor, University of Essen, Germany (2020–Present)

  • 🧪 Senior Research Fellow, UNSW (2021–Present)

  • 🏥 Lead, Diagnostics & Therapeutics Program, IHMRI

  • 🧵 Senior Research Fellow, Intelligent Polymer Research Institute, UOW (2016–2020)

  • 🔬 ARC DECRA Fellow, ARC Centre of Excellence for Electromaterials Science (2013–2016)

  • 🌏 Visiting Fellow, Hanyang University (South Korea), University of Texas at Dallas (USA)

  • 👨‍🔬 Postdoctoral Fellow and Research Associate, UOW (2009–2011)

🔹 Professional Development

Dr. Foroughi’s professional journey reflects a deep commitment to innovation and interdisciplinary research 🌐. His collaborative leadership spans top institutions across Germany, Australia, South Korea, and the U.S. 🤝. He has supervised 15 PhD candidates 🎓 and mentored researchers in cutting-edge projects involving artificial muscles, biomedical devices 🦾, and smart textiles 👚. Through roles at UNSW, UOW, and IHMRI, he has played a central role in translating lab-scale innovations into real-world applications 💡. His research leadership has contributed to health monitoring systems, drug delivery devices 💊, and soft robotics, earning him a reputation as a pioneer in smart materials 🚀.

🔹 Research Focus 

Dr. Foroughi’s research focuses on smart materials with applications in soft robotics 🤖, artificial muscles 🧵, and wearable technology 👕. He explores advanced functional materials like carbon nanotubes and hydrogels to engineer responsive systems for biomedical devices 🏥, drug delivery 💊, and ventricular assist devices ❤️. His interdisciplinary work integrates polymer science 🧪, nanotechnology 🔬, and mechatronic engineering ⚙️, fostering innovation in next-gen electronics and healthcare. His collaborative efforts across academia and industry have produced high-impact publications 📚 and breakthrough technologies that are redefining possibilities in health monitoring and smart textile applications 📈.

🔹 Awards & Honors 

🏆 Major Awards & Recognitions:

  • 🥇 ARC DECRA Fellowship (2013–2016)

  • 🧠 Emerging Research Fellow, IHMRI

  • 📘 Top Cited Paper, Advanced Materials Technologies (2020–2021)

  • ✍️ Editor’s Choice Article, MDPI Fibers (2019)

  • 🌟 Best of Advanced Materials Technologies (2020)

  • 🧵 IEEE Award for “Smart Fabrics and Networked Clothing” (2017)

  • 🧬 Asia Nanotech Camp Fellowship (2009, Taiwan)

  • 🥇 Winner, UOW Pitch Competition – Nerve Reconstruction (2014)

  • 🥇 Gold Award, R&D 100 – Artificial Muscles from Fishing Line (2015)

  • 🏅 Commercialisation Training Scheme Scholar, UOW

  • 🎓 Australian Research Scholarship for Advanced Materials (2008)

  • 🥈 Finalist, Trailblazer Award, UOW (2008)

  • 🥇 First Rank, BSc in Polymers Department, Isfahan University

Publication Top Notes:

  • Title: Advanced Energy Harvesters and Energy Storage for Powering Wearable and Implantable Medical Devices
    Citations: 21

  • Title: Highly stretchable nanocomposite piezofibers: a step forward into practical applications in biomedical devices
    Citations: 3

  • Title: Contactless vital sign monitoring systems: a comprehensive survey of remote health sensing for heart rate and respiration in internet of things and sleep applications
    Citations: 1

  • Title: Manufacturing Ulvan Biopolymer for Wound Dressings
    Citations: 3

  • Title: Ab initio calculations of structural, electronic, optical, and magnetic properties of delafossite SMoO₂ (S = Na, K, Rb, Cs) for spintronics
    Citations: 1

Mr. Tengfei Cheng | Materials science | Best Researcher Award

Mr. Tengfei Cheng | Materials science | Best Researcher Award

Mr. Tengfei Cheng, Hefei General Machinery Research Institute Co., Ltd, China

Tengfei Cheng is a dedicated engineer specializing in materials science and hydrogen storage technology. Currently serving at Hefei General Machinery Research Institute in the Basic Research Department of Pressure Vessel and Pipeline Technology, he focuses on high-density adaptive solid-state hydrogen storage and high-entropy alloy materials. With a Master’s degree in Materials Science and Engineering from Shanghai University, he has previously worked as an assistant engineer at the Yunnan Innovation Institute of Beijing University of Aeronautics and Astronautics. His contributions to hydrogen storage materials and alloy research have been recognized through multiple prestigious research grants. 🚀🔩

Professional Profile:

Scopus

Orcid

Suitability for Best Researcher Award 🏆🔬

Tengfei Cheng is a strong candidate for the Best Researcher Award due to his pioneering contributions to hydrogen storage technology, high-entropy alloys, and materials science. His work at Hefei General Machinery Research Institute plays a crucial role in developing high-density adaptive solid-state hydrogen storage systems, which are essential for the future of clean energy and sustainable fuel storage. His research in pressure vessel and pipeline technology ensures safer and more efficient hydrogen storage solutions, addressing critical challenges in the energy sector.

Education & Experience 🎓🔬

📌 Shanghai University – Master’s in Materials Science & Engineering (2018-2021)
📌 Shanghai University – Bachelor’s in Materials Science & Engineering (2014-2018)
📌 Hefei General Machinery Research Institute – Engineer (2021-Present)
📌 Yunnan Innovation Institute, Beijing University of Aeronautics & Astronautics – Assistant Engineer (2021)

Professional Development 🚀📚

Tengfei Cheng has dedicated his career to advancing materials science with a strong emphasis on hydrogen storage and high-entropy alloys. At Hefei General Machinery Research Institute, he focuses on pipeline technology and pressure vessel materials, ensuring safe and efficient energy storage solutions. His prior role at Yunnan Innovation Institute involved cutting-edge new material research, deepening his expertise in structural alloys and nanomaterials. With a commitment to scientific innovation, he actively participates in industry research projects andcollaborates on high-impact studies in the field of energy storage. 🔬⚙️

Research Focus 🔍🔬

Tengfei Cheng’s research revolves around hydrogen storage materials and high-entropy alloys for energy applications. His work explores the uniformization preparation of titanium-based alloys and their storage capabilities, aiming to enhance hydrogen storage density and safety. He is particularly interested in adaptive solid-state hydrogen storage systems, which are crucial for the future of clean energy technologies. His studies contribute to the development of innovative materials for sustainable energy solutions, making advancements in pipeline safety and pressure vessel engineering. 🚀⚡🔋

Awards & Honors 🏆🎖️

🏅 China National Machinery Industry Corporation Grant – High-Density Adaptive Solid-State Hydrogen Storage System (2024-2027)
🏅 Hefei General Machinery Research Institute Grant – Titanium-Based High-Entropy Alloys for Hydrogen Storage (2023-2025)

Publication Top Notes:

  • 🔋 “Enhanced Lithium Polysulfide Conversion via the Second Current Collector Based on Multitransition-Metal-Phosphides for Li–S Batteries”
  • ⚗️ “Thiol-Assisted Regulated Electronic Structure of Ultrafine Pd-Based Catalyst for Superior Formic Acid Electrooxidation Performances”
  • 🧲 “Topological Insulator Heterojunction with Electric Dipole Domain to Boost Polysulfide Conversion in Lithium‐Sulfur Batteries”
  • “Functionalized Polyethylene Separators with Efficient Li-Ion Transport Rate for Fast-Charging Li-Ion Batteries”
  • 🏗️ “Study on the Microstructure and Mechanical Properties of Al–Cu–Mg Aluminum Alloy Based on Molecular Dynamics Simulation”

 

Prof. Haocheng Quan | Materials | Best Researcher Award

Prof. Haocheng Quan | Materials |Best Researcher Award

Prof. Haocheng Quan, Nanjing University, China

Dr. Haocheng Quan 🎓🔬, an Associate Professor at Nanjing University 🇨🇳, is a leading researcher in bioinspired materials and advanced manufacturing technologies. With over a decade of academic and research experience, his work bridges biology and engineering, focusing on sustainable solutions 🌱 and innovative biomedical applications 🏥. He earned his Ph.D. in Materials Science from the University of California, San Diego 🇺🇸, and advanced bioinspired designs during his postdoctoral research at INM – Leibniz Institute in Germany 🇩🇪. Dr. Quan’s groundbreaking contributions to bioinspired structural materials and mechanics have been featured in prestigious journals like Nature Reviews Materials 🏆.

Professional Profile:

Scopus

Suitability Summary for Best Researcher Award: Dr. Haocheng Quan

Dr. Haocheng Quan is a standout candidate for the Best Researcher Award due to his exceptional contributions to bioinspired materials and advanced manufacturing technologies. His work is a perfect blend of scientific innovation and practical application, addressing critical challenges in sustainability, biomedical engineering, and wearable technologies. With his advanced academic background and cutting-edge research, Dr. Quan has established himself as a global thought leader in bioinspired materials science.

Education and Experience 

Education:

  • 🎓 Ph.D. in Materials Science and Engineering, UC San Diego (2019)
  • 🎓 M.S. in Materials Science and Engineering, UC San Diego (2015)
  • 🎓 B.E. in Materials Science and Engineering, Donghua University, China (2013)

Experience:

  • 🧑‍🏫 Associate Professor, Nanjing University, China (Dec 2023 – Present)
  • 🧪 Postdoctoral Researcher, INM – Leibniz Institute, Germany (Feb 2020 – Jul 2023)

Professional Development 

Dr. Quan’s professional journey reflects his dedication to bioinspired innovation 🌟. At Nanjing University, he mentors students and leads pioneering research in bioinspired structural and functional materials 🦎📐. During his postdoctoral tenure at INM – Leibniz Institute, he focused on gecko-inspired adhesion technologies 🦎🧲, kirigami-inspired microstructures ✂️, and bioinspired stinger designs 🐝. His work combines biomechanics and materials science to create sustainable solutions 🌿 for biomedical applications 🩺 and wearable technologies ⌚. With a collaborative spirit 🤝, he continues to expand the horizons of engineering inspired by nature’s remarkable strategies 🌍.

Research Focus 

Dr. Quan’s research explores the fascinating intersection of biology and engineering 🔬🦠. He specializes in the mechanics of biological materials 💪🪵, bioinspired adhesion systems 🦎🧲, and actuation technologies for sustainable applications 🌿. His innovative studies include gecko-inspired dry adhesives 🦎, bioinspired microneedles 💉, and kirigami-based designs ✂️. Dr. Quan is particularly interested in wearable electronics for health monitoring 🩺⌚, optical properties of biological materials 🌈, and active defense mechanisms in natural systems 🐟🛡️. His work demonstrates a commitment to developing multifunctional, sustainable solutions for medical, technological, and structural challenges 🚀.

Awards and Honors 

  • 🏆 Featured Researcher in Nature Reviews Materials and Advanced Functional Materials.
  • 🥇 Co-author of over 20 high-impact publications 📚.
  • 🌟 First/Co-corresponding Author in multiple leading journals 🔬.
  • 🎖️ Recognized Speaker at international conferences like TMS Annual Meeting 🌐.
  • 🧠 Awarded Postdoctoral Fellowship for groundbreaking work at INM – Leibniz Institute 🏅.

Publication Top Notes:

📜 “The shape of Nature’s stingers revealed” by H. Quan, X. Liang, X. Zhang, R.M. McMeeking, and E. Arzt, published in Proceedings of the National Academy of Sciences of the United States of America (2024), cited by 5. 🔬📖

 

Assoc. Prof. Dr. Chakib HRIZI | Hybrid materials | Best Researcher Award

Assoc. Prof. Dr. Chakib HRIZI | Hybrid materials | Best Researcher Award

Assoc. Prof. Dr. Chakib HRIZI, Université de Gabès, Faculty of Sciences of Gabès, Tunisia

Dr. Chakib HRIZI is a distinguished Tunisian academic specializing in Inorganic Chemistry. With a Ph.D. in Chemistry from the Faculty of Sciences, Sfax, he has made significant contributions to the synthesis and characterization of hybrid materials. Currently serving as an Assistant Professor at the Faculty of Sciences, Gabes, Dr. HRIZI’s research focuses on materials science, particularly optoelectronic properties and solid-state transitions of bismuth compounds. He has published several research papers in prestigious journals, contributing to the advancement of inorganic chemistry. 🌍📚🔬

Professional Profile:

Google Scholar

Suitability of Dr. Chakib HRIZI for the Best Researcher Award

Dr. Chakib HRIZI is a distinguished Assistant Professor at the Faculty of Sciences, Gabes, with a specialization in Inorganic Chemistry. His research focuses on the synthesis and characterization of hybrid materials, particularly in optoelectronic properties and solid-state transitions of bismuth compounds. Dr. HRIZI’s work has made significant contributions to materials science, particularly in the development of advanced materials with potential applications in energy and electronics. With a Ph.D. in Chemistry and experience at prestigious institutions such as the Néel Institute in Grenoble, Dr. HRIZI is a highly skilled academic and researcher whose achievements have garnered recognition in inorganic chemistry.

Education & Experience

  • Baccalaureate in Experimental Sciences (2001) 🏫
  • National Diploma in Industrial Chemistry (2002/2003) 🧪
  • Master’s in Industrial Chemistry (2005/2006) 🎓
  • Master’s in Inorganic Chemistry (2007) 🔬
  • Ph.D. in Chemistry, Faculty of Sciences, Sfax (2012) 📜
  • Contractual Assistant, Faculty of Sciences, Sfax (2008-2012) 👩‍🏫
  • Maître Assistant (Assistant Professor), Faculty of Sciences, Gabes (2012-present) 👨‍🏫

Professional Development

Dr. Chakib HRIZI has gained a wealth of experience through various internships, including research at the Néel Institute in Grenoble, where he studied the crystal structures of hybrid materials. His work at the Brass Products Manufacturing Company “SOPAL” involved investigating efficient physico-chemical techniques for electroplating baths. His professional journey also includes directing research for Master’s students and coordinating practical and theoretical courses in Chemistry. This experience has significantly shaped his career as a prominent academic and researcher in the field of Inorganic Chemistry. 🧑‍🔬📈🔍

Research Focus

Dr. HRIZI’s research primarily explores inorganic and hybrid materials, particularly focusing on halogenobismuthates(III). He investigates their synthesis, structural properties, phase transitions, and new optical properties, contributing to the development of materials with advanced optoelectronic features. His work in solid-state chemistry and crystal structures has significant applications in materials science, especially for functional materials with potential use in energy and electronics. 🔬🔍💡

Awards & Honors

  • PhD with “Honorable” Distinction from the Faculty of Sciences, Sfax 🎓🏅
  • Publications in Renowned Journals (The Japan Soc. Anal. Chem., Journal of Molecular Structure, Ionics) 📝📚
  • Internship at Néel Institute-Grenoble (2010) 🌍
  • Research Excellence in Hybrid Materials 🏆

Publication Top Notes:

  • “Crystal structure, vibrational and optical properties of a new self-organized material containing iodide anions of bismuth (III), [C6H4 (NH3) 2] 2Bi2I10· 4H2O”

    Cited by: 89

  • “α-to β-[C6H4 (NH3) 2] 2Bi2I10 reversible solid-state transition, thermochromic and optical studies in the p-phenylenediamine-based iodobismuthate (III) material”

    Cited by: 79

  • “Structural characterization, vibrational and optical properties of a novel one-dimensional organic–inorganic hybrid based-iodobismuthate (III) material, [C10H7NH3] BiI4”

    Cited by: 74

  • “Synthesis, crystal structure, thermal and dielectric properties of bis(p-phenylenediammonium) chloride hexachlorobismuthate(III) monohydrate [C6H4(NH3)2]2ClBiCl6.H2O”

    Cited by: 24

  • “Synthesis and Crystal Structure of [C6H4OCH3NH3] 2BiCl5”

    Cited by: 14

 

 

Prof. Dr. Wenxing Zhang | Material | Best Researcher Award

Prof. Dr. Wenxing Zhang | Material | Best Researcher Award

Prof. Dr. Wenxing Zhang, Hanshan Normal University, China

Zhang Wenxing, PhD 🧑‍🔬, is a Full Professor specializing in material simulation and design. A 2009 graduate from the Institute of Physics, Chinese Academy of Sciences (Physics) 🎓, and IEMN (CNRS), France (Materials Science) 🇫🇷, he has advanced the fields of nanomaterials and device simulations. Dr. Zhang has authored over 60 SCI papers 📄, holds six patents in China 📜, and published a monograph 📘. He has completed four funded research projects 🔬 and received prestigious awards, including the First Prize for Scientific and Technological Progress in Beijing 🏆 and Shanxi’s Award for Excellent Scientific Papers 🌟.

Professional Profile:

Scopus

Suitability for the Best Researcher Award

Dr. Zhang Wenxing is an outstanding candidate for the Best Researcher Award due to his pioneering work in nanomaterials and device simulations. His exceptional academic and professional achievements underscore his contributions to the advancement of materials science and nanotechnology. Below is a summary of his suitability

Education & Experience:

  • 🎓 2009: PhD in Physics, Institute of Physics, Chinese Academy of Sciences, China
  • 🇫🇷 2009: PhD in Materials Science, IEMN (CNRS), France
  • 🧑‍🏫 Full Professor conducting research in material simulation and nanomaterial design.

Professional Development:

Dr. Zhang Wenxing has made remarkable contributions in the simulation and design of nanomaterials and devices 🌐. His research has been published in top-tier journals in materials science, physics, and chemistry 📚. With over 60 SCI-indexed papers 📑, six patents in China 📜, and one monograph 📘, he stands as a leading expert in his field. Dr. Zhang has led and completed two National Natural Science Foundation of China projects 🇨🇳 and two Guangdong Provincial projects 🌏. His innovations in nanomaterial design continue to push the boundaries of modern technology 🚀.

Research Focus:

Dr. Zhang’s research centers on simulation and design of nanomaterials and devices 🧬. His work bridges physics, materials science, and chemistry 🔗, offering groundbreaking insights into nanomaterial behavior and application. Using computational techniques, he develops innovative solutions for advanced technologies 💻. His focus includes modeling new material properties 🧪 and optimizing nano-devices for improved performance ⚙️. By integrating simulation with experimental design 🔬, Dr. Zhang’s research contributes significantly to the advancement of nanotechnology 🌟, supporting applications in energy, electronics, and material sciences ⚡.

Awards & Honors:

  • 🏆 First Prize for Scientific and Technological Progress, Beijing
  • 🌟 Award for Excellent Scientific Papers, Shanxi Province
  • 📜 Holder of six authorized patents, China
  • 📘 Published one monograph on materials science and simulation
  • 📚 Authored over 60 SCI papers in top journals worldwide

Publication Top Notes:

  • Title: Pd and Pd-B modified g-CN monolayer as innovative sensor and scavenger for CO, NO2, C2H2, and C2H4: A DFT study
    Citations: 3
  • Title: Harnessing a simple ratiometric fluorescent probe for albumin recognition and beyond
    Citations: 1
  • Title: Multi-Band Emission of Pr3+-Doped Ca3Al2O6 and the Effects of Charge Compensator Ions on Luminescence Properties
    Citations: 1
  • Title: Pd, Ag decorated MoSi2N4 monolayer: A potential material for reusable CO and NO gas-sensitive material with high sensitivity
    Citations: 1
  • Title: Boosting the Self-Trapped Exciton Emission in Cs4SnBr6 Zero-Dimensional Perovskite via Rapid Heat Treatment
    Citations: 9

 

Assoc. Prof. Dr. Dawei Jiang | Material sciences | Outstanding Scientist Award

Assoc. Prof. Dr. Dawei Jiang | Material sciences | Outstanding Scientist Award

Assoc. Prof. Dr. Dawei Jiang, Northeast Forestry University, China

Dawei Jiang, Associate Professor and Secretary of Chemistry at the College of Chemistry, Chemical Engineering, and Resource Utilization, Northeast Forestry University, specializes in innovative material sciences. His research focuses on flame-retardant polymers, functional materials, wearable sensors, and high-performance composites. With extensive academic and professional experience across China, the USA, and New Zealand, he has authored influential publications in advanced material technologies. Passionate about sustainability and technological advancements, Dawei Jiang collaborates globally to drive innovation in flexible electronics and nanotechnology. ✨🎓🌍

Professional Profile:

Google Scholar

Summary of Suitability

Assoc. Prof. Dr. Dawei Jiang exemplifies the qualities of an outstanding scientist through his impactful research, global collaborations, and dedication to advancing sustainable and functional materials. His ability to merge molecular design with cutting-edge applications makes him a trailblazer in material sciences and a strong contender for the Outstanding Scientist Award. His achievements not only showcase exceptional academic excellence but also underline his contribution to addressing critical societal and technological challenges. 🌟

Education and Experience

📘 Education

  • 🎓 Visiting Scholar: Chemistry, University of Auckland, New Zealand (2024-2025)
  • 🎓 Joint Ph.D. Student: Chemical Engineering, Lamar University, USA (2013-2015)
  • 🎓 Ph.D.: Chemical Engineering and Technology, Harbin Institute of Technology, China (2010-2015)
  • 🎓 Master’s: Polymeric Chemistry and Physics, Northeast Forestry University, China (2007-2010)
  • 🎓 Bachelor’s: Food Chemistry and Engineering, Northeast Forestry University, China (2002-2006)

📘 Experience

  • 🧪 Associate Professor: Northeast Forestry University, China (Since 2015)
  • 🏛️ Deputy Town Chief: Yuqi, Huishan, Jiangsu Province, China (2012-2013)

Professional Development

Dawei Jiang has actively contributed to advanced material sciences, focusing on polymer materials, wearable sensors, and sustainable composites. As a visiting scholar at the University of Auckland, he enhances his expertise in cutting-edge chemistry. His joint Ph.D. tenure at Lamar University enriched his insights into international research practices. Passionate about sustainability and functional designs, Jiang’s career reflects a commitment to blending academic knowledge with practical innovation. Through global collaborations, he has authored numerous impactful publications in leading journals, promoting advancements in nanotechnology, flame-retardant polymers, and flexible electronics. 🌟🔬🌏

Research Focus

Dawei Jiang’s research centers on innovative and sustainable materials:

  • 🔥 Development of flame-retardant polymer materials
  • 💡 Functional polymers for high-performance applications
  • 🩹 Wearable and flexible strain sensors
  • 🧵 Enhanced interfacial properties in fiber-reinforced composites
    His work bridges molecular design and cutting-edge technology, fostering advancements in electronics, thermal insulation, and sustainable nanocomposites. His efforts in triboelectric nanogenerators and cellulose-based materials drive transformative applications across wearable tech, architecture, and energy sectors. 🌱📱⚙️

Awards and Honors

  • 🏆 Outstanding Researcher Award: Northeast Forestry University
  • 🏅 Top 10 Publications of the Year: Recognized for impactful contributions in material sciences
  • 🎖️ Erasmus+ Fellowship: University of Porto, Portugal (2016-2017)
  • 🌟 National Young Talent Award: Innovation in Chemistry and Material Design
  • 🥇 Best Paper Award: International Conference on Nanotechnology Applications

 Publication Top Notes:

  • 📖 Electromagnetic interference shielding polymers and nanocomposites – a review (Cited by: 624, Year: 2019)
  • 🛡️ Advanced micro/nanocapsules for self-healing smart anticorrosion coatings (Cited by: 411, Year: 2015)
  • 📐 Flexible sandwich structural strain sensor based on silver nanowires decorated with self-healing substrate (Cited by: 227, Year: 2019)
  • 🌟 Interfacially reinforced unsaturated polyester carbon fiber composites with a vinyl ester-carbon nanotubes sizing agent (Cited by: 205, Year: 2018)
  • 🧪 Electrically insulated epoxy nanocomposites reinforced with synergistic core–shell SiO2@MWCNTs and montmorillonite bifillers (Cited by: 192, Year: 2017)