Silvia Morales de la Rosa | biomass valorization | Best Researcher Award

Dr. Silvia Morales de la Rosa | biomass valorization | Best Researcher Award

Dr. Silvia Morales de la Rosa, Instituto de Catálisis y Petroleoquímica – CSIC, Spain

Silvia Morales de la Rosa 🎓🧪 is a dedicated chemist and researcher at the Instituto de Catálisis y Petroleoquímica (CSIC) in Spain 🇪🇸. With a Ph.D. in Chemistry from Madrid Autonomous University (2015) and over 15 years of experience, her expertise lies in biomass valorization, heterogeneous catalysis, and biofuels 🌿⚗️. Silvia leads European projects like HE FUELGAE and FUELPHORIA 🌍💡, has authored 24 scientific papers 📚, and holds 3 patents. Passionate about sustainable energy and circular economy 🔄🌱, she mentors Ph.D. students and collaborates internationally to drive innovation in renewable fuel technologies 🚀.

Professional Profile:

Scopus

Suitability Summary

Key Strengths

  • Research Excellence: With 24 peer-reviewed publications and 3 patents, Silvia has made impactful contributions to biomass valorization and catalysis.

  • Leadership in European Projects: As PI and Coordinator of multimillion-euro Horizon Europe projects (HE FUELPHORIA – €11M and HE FUELGAE – €5M), she has demonstrated strategic and technical leadership at the European level.

  • Innovative Techniques: Her work spans heterogeneous catalysis, MOFs, tandem catalysis, and flow systems for converting biomass to high-value chemicals like HMF, furfural, and ethanol.

  • Academic Mentorship: She actively mentors Ph.D. and MSc students, shaping the next generation of chemists with excellence in both academic and applied research.

  • Resilience & Dedication: Overcame medical challenges (including cancer treatments) while maintaining a productive and influential research career.

Education and Experience 

  • 🎓 Education:

    • 🎓 PhD in Chemistry – Madrid Autonomous University, Spain (2015)

    • 🎓 Graduate in Chemical Sciences – Valladolid University, Spain (2001)

    💼 Experience:

    • 🧪 Researcher at CSIC’s ICP (2008–Present)

    • 🧪 R&D roles in ANALIZAGUA S.L., AQM Laboratorios, and Ministry of Industry projects (2004–2008)

    • 🔬 Fellowship on chemical research with Repsol & Valladolid University (2001–2003)

    • 🤕 Medical interruptions due to cancer treatment (2004, 2012, 2016–2017)

Professional Development 

Silvia has continuously enhanced her professional development through hands-on industrial research collaborations 🔬🏭, specialization fellowships, and leadership in high-level European projects 🌍📊. She has led project writing, technical-economic planning, and partner engagement for Horizon Europe proposals 📑🤝. Her role as Track Co-Lead at the upcoming NAM29 conference 🧑‍🔬🌎 underscores her active participation in international scientific forums. She mentors Ph.D. candidates and supervises academic theses 📘👩‍🎓, contributing to the academic and practical growth of upcoming scientists. Her work merges lab research with scalable industrial applications, bridging the gap between discovery and deployment ⚗️⚙️.

Research Focus 

Silvia’s research is centered on sustainable energy and green chemistry 🌱⚗️. Her work targets biomass valorization, microalgae processing, and the production of advanced biofuels and e-fuels 🔬🌿. She develops heterogeneous catalytic systems for hydrotreatment, hydrogenation, and selective oxidation processes 🔥🧪. Her innovations aim to convert waste biomass into valuable bio-products under mild, eco-friendly conditions ♻️. With significant achievements like pilot plant construction and patents, Silvia’s focus lies at the intersection of renewable energy, circular economy, and industrial catalysis 🚀🏭. Her projects aim to accelerate the transition toward sustainable fuel alternatives and reduced carbon emissions 🌍💧.

Awards and Honors 

  • 🏆 Magna “Cum Laude” Ph.D. distinction – Madrid Autonomous University

  • 🏅 Track Co-Lead – Biomass & Waste Valorization, NAM29 Conference (2025)

  • 📘 Honors – MSc Thesis Supervision (Marta Lara Serrano, UNED, 2018)

  • 🎖️ PI of CSIC in €11M HE FUELPHORIA project

  • 🌍 Coordinator of €5M Horizon Europe HE FUELGAE project

  • 🧪 Supervised multiple MSc & Ph.D. theses with academic excellence ratings

Publication Top Notes:

1. Lara-Serrano, M.; Morales-delaRosa, S. (AC); Campos-Martín, J.M.; Romero, I.; Castro, E.; Oliva, J. M.; Manzanares, P. (2024)

Title: OrganoCat fractionation of vine shoots for coproduction of bioethanol, furfural, and lignin
Journal: Fuel
Status: Manuscript Under Review

🔍 Summary:
This study explores the OrganoCat process for fractionating vine shoots into three value-added products: bioethanol, furfural, and lignin. The method combines organic acid catalysis and biphasic extraction to enhance product yields. The paper demonstrates a sustainable approach to biomass valorization with significant potential for biorefinery integration.

2. Sboiu, D. M.; Márquez-Medina, M.D.; Lara-Serrano, M.; Campos-Martin, J.M.; Morales-delaRosa, S. (AC) (2024)

Title: Catalytic conversion into 5-hydroxymethylfurfural and furfural by heterogeneous sulfonic acid catalysis in a flowing acetone-water system
Journal: Fuel
Status: Manuscript in Press

🔍 Summary:
This paper presents a continuous-flow system using heterogeneous sulfonic acid catalysts to convert sugars into HMF and furfural, key bio-based platform chemicals. The use of an acetone-water solvent system significantly enhances selectivity and stability. The findings support advances in flow chemistry for biomass-derived chemicals.

3. Cardoza, D.; Contreras, M. Mar; Lara-Serrano, M.; Morales-delaRosa, S.; Campos-Martín, J.M.; Romero, I. (AC); Castro, E. (2024)

Title: Sustainable vine shoots-to-ethanol valorisation by a sequential acid/organosolv pretreatment
Journal: Process Safety and Environmental Protection
Volume: 183
Date: March 2024
Pages: 1059–1070
DOI: https://doi.org/10.1016/j.psep.2024.01.063

🔍 Summary:
This study proposes a two-step pretreatment (acid followed by organosolv) to efficiently convert vine shoot biomass into ethanol. The process enhances hemicellulose and lignin removal, improving cellulose accessibility. Results contribute to low-impact, high-efficiency bioethanol production strategies.

4. Lara-Serrano, M.; Sboiu, D. M.; Morales-delaRosa, S. (AC); Campos-Martin J.M. (AC) (2023)

Title: Selective Fragmentation of Lignocellulosic Biomass with ZnCl₂·4H₂O Using a Dissolution/Precipitation Method
Journal: Applied Sciences (Switzerland)
Volume: 13, Issue 5
Article Number: 2953
DOI: https://doi.org/10.3390/app13052953
Citations: 2
Field-Weighted Citation Impact (FWCI): 1.30

🔍 Summary:
The article presents a novel ZnCl₂·4H₂O-based strategy for selectively fragmenting lignocellulosic biomass. Using a dissolution/precipitation process, it facilitates the isolation of key biomass components under mild conditions. This offers a new pathway for biomass deconstruction in green chemistry applications.

5. Lara-Serrano, M.; Morales-delaRosa, S.; Campos-Martin, J.M. (AC); Abdelkader-Fernández, V.K.; Cunha-Silva, L.; Balula, S.S. (2022)

Title: One-Pot Conversion of Glucose into 5-Hydroxymethylfurfural using MOFs and Brønsted-Acid Tandem Catalysts
Journal: Advanced Sustainable Systems
Volume: 6, Issue 5
Article Number: 2100444
DOI: https://doi.org/10.1002/adsu.202100444
Back Cover Highlight: Cover link
Citations: 10
FWCI: 1.28

Conclusion:

Dr. Silvia Morales de la Rosa represents the ideal profile of a Best Researcher Award recipient: a scientist whose work not only advances theoretical understanding but also provides practical, scalable solutions to global sustainability challenges. Her innovative methodologies, strong leadership, and commitment to mentoring make her an outstanding figure in renewable fuel technologies and circular economy research.