Dr. Amel Boudjemaa | Nanomaterials for Energy | Women Researcher Award
Researcher, Center for Scientific and Technical Research in Physicochemical Analysis (CRAPC), Algeria
Dr. Amel Boudjemaa is a prolific Algerian researcher at the Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Bou Ismail, Algeria. Her scientific contributions lie primarily in photocatalysis, nanomaterials, surface chemistry, and environmental remediation. With a Scopus h-index of 20, 1,467 citations, and 90 peer-reviewed publications, her work has significantly influenced the fields of materials chemistry and sustainable environmental technologies. Her recent research focuses on the design and optimization of advanced nanostructured photocatalysts for water purification, pollutant degradation, and hydrogen generation under visible light. Notably, she has investigated heterojunction and doped oxide-based photocatalysts—such as Co₂SnO₄/Co₃O₄/SnO₂, ZnO–CuO–Al₂O₃, and Bi/Fe-doped aluminophosphates—demonstrating enhanced degradation efficiencies for pharmaceuticals and dyes like diclofenac, ibuprofen, and methyl orange. These studies integrate experimental synthesis, photochemical characterization, and mechanistic modeling to predict by-product toxicity and reaction kinetics, emphasizing both efficiency and environmental safety. Beyond photocatalysis, Dr. Amel Boudjemaa has explored hybrid and functional nanomaterials with applications in sensing, adsorption, and energy storage. Her works on platinum(IV)-carbon sphere hybrids and tin-based non-enzymatic sensors have expanded the potential of nanomaterials for electrochemical detection and clean energy technologies. Methodologically, her research combines advanced materials synthesis, surface modification, spectroscopic and electrochemical analysis, and computational prediction tools. Her interdisciplinary approach bridges materials science, environmental engineering, and green chemistry, contributing to cleaner production and pollution mitigation strategies. Overall, Dr. Amel Boudjemaa’s body of work demonstrates a consistent pursuit of innovative, sustainable solutions for environmental contaminants, positioning her among the leading North African researchers in applied photocatalysis and nanomaterial-based remediation.
Profile: Scopus | ORCID | Google Scholar | ResearcheGate | Loop | Web of Science | Linkedin
Featured Publications
Boumaza, S., Boudjemaa, A., Bouguelia, A., Bouarab, R., & Trari, M. (2010). Visible light induced hydrogen evolution on new hetero-system ZnFe₂O₄/SrTiO₃. Applied Energy, 87(7), 2230–2236.
Boudjemaa, A., Boumaza, S., Trari, M., Bouarab, R., & Bouguelia, A. (2009). Physical and photo-electrochemical characterizations of α-Fe₂O₃: Application for hydrogen production. International Journal of Hydrogen Energy, 34(10), 4268–4274.
Chezeau, B., Boudriche, L., Vial, C., & Boudjemaa, A. (2020). Treatment of dairy wastewater by electrocoagulation process: Advantages of combined iron/aluminum electrodes. Separation Science and Technology, 55(14), 2510–2527.
Boumaza, S., Boudjemaa, A., Omeiri, S., Bouarab, R., Bouguelia, A., & Trari, M. (2010). Physical and photoelectrochemical characterizations of hematite α-Fe₂O₃: Application to photocatalytic oxygen evolution. Solar Energy, 84(4), 715–721.
Boudjemaa, A., Bouarab, R., Saadi, S., Bouguelia, A., & Trari, M. (2009). Photoelectrochemical H₂-generation over spinel FeCr₂O₄ in X²⁻ solutions (X²⁻ = S²⁻ and SO₃²⁻). Applied Energy, 86(7–8), 1080–1086.